63 World Health Organization. Guidance for national tuberculosis programmes on the management of tuberculosis in children. 2nd edn. Geneva, World Health Organization, 2014. 64 De Castro N, Mechai F, Bachelet D, et al. Treatment with a three-drug regimen for pulmonary tuberculosis based on rapid molecular detection of isoniazid resistance: a noninferiority randomized trial (FAST-TB). Open Forum Infect Dis 2022 9: ofac353. 65 Fregonese F, Ahuja SD, Akkerman OW, et al. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med 2018 6: 265–275. 66 Ramachandran G, Hemanth Kumar AK, Srinivasan R, et al. Effect of rifampicin &isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res 2012 136: 979–984. 67 Lempens P, Meehan CJ, Vandelannoote K, et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep 2018 8: 3246. 68 World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis. Geneva, WHO, 2008. 69 Lan Z, Ahmad N, Baghaei P, et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med 2020 8: 383–394. 70 Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 2020 382: 893–902. 71 Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N Engl J Med 2022 387: 810–823. 72 Nyang’wa BT, Berry C, Kazounis E, et al. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N Engl J Med 2022 387: 2331–2343. 73 Dheda K, Lange C. A revolution in the management of multidrug-resistant tuberculosis. Lancet 2022 400: 1823–1825. 74 Lange C, Kohler N, Gunther G. Regimens for drug-resistant tuberculosis. N Engl J Med 2023 388: 190. 75 World Health Organization. WHO operational handbook on tuberculosis. Module 4: treatment -drug-resistant tuberculosis treatment, update. Geneva, World Health Organization, 2022. 76 Collaborative Group for the Meta-Analysis of Individual Patient Data in MDRTB treatment-2017, Ahmad N, Ahuja SD, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet 2018 392: 821–834. 77 Harrison GA, Mayer Bridwell AE, Singh M, et al. Identification of 4-amino-thieno[2,3-d]pyrimidines as QcrB inhibitors in Mycobacterium tuberculosis. mSphere 2019 4: e00606-19. 78 Mali SN, Pandey A, Bhandare RR, et al. Identification of hydantoin based Decaprenylphosphoryl-beta-D-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. Sci Rep 2022 12: 16368. 79 Poce G, Consalvi S, Biava M. MmpL3 inhibitors: diverse chemical scaffolds inhibit the same target. Mini Rev Med Chem 2016 16: 1274–1283. 80 Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. Medchemcomm 2019 10: 1329–1341. 81 P SH, Solapure S, Mukherjee K, et al. Optimization of pyrrolamides as mycobacterial GyrB ATPase inhibitors: structure-activity relationship and in vivo efficacy in a mouse model of tuberculosis. Antimicrob Agents Chemother 2014 58: 61–70. 82 McKenna L. Treatment Action Group Pipeline report 2022. www.treatmentactiongroup.org/resources/ pipeline-report/2022-pipeline-report/ 83 Koele SE, Phillips PPJ, Upton CM, et al. Early bactericidal activity studies for pulmonary tuberculosis: A systematic review of methodological aspects. Int J Antimicrob Agents 2023 61: 106775. 84 GlaxoSmithKline. GSK announces positive Phase IIa study results for a new first-in-class candidate medicine for patients with tuberculosis. Date last updated: 14 November 2022. www.gsk.com/en-gb/media/press- releases/gsk-announces-positive-phase-iia-study-results-for-a-new-first-in-class-candidate-medicine/. 85 de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a new antituberculosis agent. N Engl J Med 2020 382: 1280–1281. 86 Heinrich N. BTZ-043 drug development programme. Date last updated: 13 November 2022. www.newtbdrugs. org/sites/default/files/meetings/files/13_Norbert%20Heinrich_LMU%20Munich.pdf. 87 Boeree MJ, Lange C, Thwaites G, et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. Int J Tuberc Lung Dis 2021 25: 886–889. 88 New TB Drugs Working Group. PAN-TB collaboration announces novel tb drug regimens trial. Date last updated: 23 August 2022. https://www.newtbdrugs.org/news/pan-tb-collaboration-announces-novel-tb-drug- regimens-trial 89 Lee A, Xie YL, Barry CE, et al. Current and future treatments for tuberculosis. BMJ 2020 368: m216. 90 Phillips PPJ, Mitnick CD, Neaton JD, et al. Keeping phase III tuberculosis trials relevant: adapting to a rapidly changing landscape. PLoS Med 2019 16: e1002767. https://doi.org/10.1183/2312508X.10024622 137 TREATMENT OF DS-TB AND DR-TB |C. LANGE ET AL.